14 research outputs found

    An Iterative Design with Variable Step Prototype Filter for Cosine Modulated Filter Bank

    Get PDF
    A systematic and self controlled prototype filter design approach for multichannel Cosine Modulated Near Perfect Reconstruction (NPR) filter bank is proposed in this paper. The primary goal is to design a prototype filter with enhanced performance i.e., minimum amplitude distortion and aliasing error. This algorithm approximates 3dB cutoff frequency very close to π/2M. This is achieved by selecting suitable step size which is a function of transition width. If the selection of step size is too fine, the objective function oscillates. Whereas, if step size is coarse, 3dB cutoff frequency will not be close to π/2M. This will degrade the overall performance of the prototype filter. Thus by choosing the step size as a function of transition width and varying the step size from coarser to finer level, the minimum amplitude distortion and aliasing error can be definitely achieved. The proposed filter is designed using two input parameters: number of subbands M and attenuation A and all other system parameters are derived from it to avoid heuristic inputs. Simulation results indicate better performance with reference to algorithms existing in literature. In addition, the design approach is systematic and self controlled

    East Asia in World Trade: The Decoupling Fallacy, Crisis and Policy Challenges

    Full text link

    Trade Liberalisation and the Poverty of Nations: A Review Article

    No full text

    Tiny, Poor, Landlocked, Indebted, But Growing: Lessons for Late Reforming Transition Economies from Laos

    No full text

    Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c

    Get PDF
    Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c(-/-)) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c(-/-) mice with AAD also had reduced numbers of -smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma

    The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.

    Get PDF
    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection
    corecore